Search results for "Actin cytoskeleton organization"
showing 6 items of 6 documents
RPGR protein complex regulates proteasome activity and mediates store-operated calcium entry
2018
Ciliopathies are a group of genetically heterogeneous disorders, characterized by defects in cilia genesis or maintenance. Mutations in the RPGR gene and its interacting partners, RPGRIP1 and RPGRIP1L, cause ciliopathies, but the function of their proteins remains unclear. Here we show that knockdown (KD) of RPGR, RPGRIP1 or RPGRIP1L in hTERT-RPE1 cells results in abnormal actin cytoskeleton organization. The actin cytoskeleton rearrangement is regulated by the small GTPase RhoA via the planar cell polarity (PCP) pathway. RhoA activity was upregulated in the absence of RPGR, RPGRIP1 or RPGRIP1L proteins. In RPGR, RPGRIP1 or RPGRIP1L KD cells, we observed increased levels of DVl2 and DVl3 pr…
α-parvin is required for epidermal morphogenesis, hair follicle development and basal keratinocyte polarity
2020
Epidermal morphogenesis and hair follicle (HF) development depend on the ability of keratinocytes to adhere to the basement membrane (BM) and migrate along the extracellular matrix. Integrins are cell-matrix receptors that control keratinocyte adhesion and migration, and are recognized as major regulators of epidermal homeostasis. How integrins regulate the behavior of keratinocytes during epidermal morphogenesis remains insufficiently understood. Here, we show that alpha-parvin (alpha-pv), a focal adhesion protein that couples integrins to actin cytoskeleton, is indispensable for epidermal morphogenesis and HF development. Inactivation of the murine alpha-pv gene in basal keratinocytes res…
Inhibition of Rac1 GTPase Decreases Vascular Oxidative Stress, Improves Endothelial Function, and Attenuates Atherosclerosis Development in Mice
2021
Aims: Oxidative stress and inflammation contribute to atherogenesis. Rac1 GTPase regulates pro-oxidant NADPH oxidase activity, reactive oxygen species (ROS) formation, actin cytoskeleton organization and monocyte adhesion. We investigated the vascular effects of pharmacological inhibition of Rac1 GTPase in mice.Methods and Results: We treated wild-type and apolipoprotein E-deficient (ApoE−/−) mice with Clostridium sordellii lethal toxin (LT), a Rac1 inhibitor, and assessed vascular oxidative stress, expression and activity of involved proteins, endothelial function, macrophage infiltration, and atherosclerosis development. LT-treated wild-type mice displayed decreased vascular NADPH oxidase…
Macroporous Scaffolds Based on Chitosan and Bioactive Molecules†
2007
Chitosan-based macroporous scaffolds for tissue engineering applications are developed by cryogelation in aqueous media. The cryogels obtained are modified using a new RGD-containing peptide developed in this laboratory. A RGD-containing peptide is chemically attached to the surface of the cryogels to improve cell adhesion to the 3D-structure chitosan-based scaffolds. The synthesis, physico-chemical, and biological evaluations of the system are described, and the optimization of the formulations is carried out by varying the reaction parameters. Fibroblasts and endothelial cells are used in cell cultures to determine cell behavior and the cytocompatibility of the macroporous cryogels. Cell …
Renal Lipotoxicity-Associated Inflammation and Insulin Resistance Affects Actin Cytoskeleton Organization in Podocytes
2015
In the last few decades a change in lifestyle has led to an alarming increase in the prevalence of obesity and obesity-associated complications. Obese patients are at increased risk of developing hypertension, heart disease, insulin resistance (IR), dyslipidemia, type 2 diabetes and renal disease. The excess calories are stored as triglycerides in adipose tissue, but also may accumulate ectopically in other organs, including the kidney, which contributes to the damage through a toxic process named lipotoxicity. Recently, the evidence suggests that renal lipid accumulation leads to glomerular damage and, more specifically, produces dysfunction in podocytes, key cells that compose and maintai…
Chronic ethanol exposure alters the levels, assembly, and cellular organization of the actin cytoskeleton and microtubules in hippocampal neurons in …
2010
The organization and dynamics of microtubules (MTs) and the actin cytoskeleton are critical for the correct development and functions of neurons, including intracellular traffic and signaling. In vitro ethanol exposure impairs endocytosis, exocytosis, and nucleocytoplasmic traffic in astrocytes and alters endocytosis in cultured neurons. In astrocytes, these effects relate to changes in the organization and/or function of MTs and the actin cytoskeleton. To evaluate this possibility in hippocampal cultured neurons, we analyzed if chronic ethanol exposure affects the levels, assembly, and cellular organization of both cytoskeleton elements and the possible underlying mechanisms of these effec…